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Abstract

De-identification, or identifying and removing protected health information (PHI) from clinical 

data, is a critical step in making clinical data available for clinical applications and research. This 

paper presents a natural language processing system for automatic de-identification of psychiatric 

notes, which was designed to participate in the 2016 CEGS N-GRID shared task Track 1. The 

system has a hybrid structure that combines machine leaning techniques and rule-based 

approaches. The rule-based components exploit the structure of the psychiatric notes as well as 

characteristic surface patterns of PHI mentions. The machine learning components utilize 

supervised learning with rich features. In addition, the system performance was boosted with 

integration of additional data to the training set through domain adaptation. The hybrid system 

showed overall micro-averaged F-score 90.74 on the test set, second-best among all the 

participants of the CEGS N-GRID task.
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1. Introduction

Clinical narratives of patient medical records contain rich information such as medication 

history and treatment information. Thus, the narratives have gained much attention from 

health care providers and researchers as an important resource for medical applications and 

clinical studies. Before using narrative resources, researchers must acquire both the 

informed consent from the patients and the approval from the Institutional Review Board 

(IRB). However, when the narratives are de-identified, i.e., when the information that may 

reveal patient’s identification is identified and removed from the narratives, they can be 

utilized without patient content. The Health Insurance Portability and Accountability Act 

(HIPAA) defines 18 categories of protected health information (PHI) that are required to be 

removed in order for a record to be considered de-identified.

Due to the costs associated with manual de-identification of large clinical corpora, 

significant research has focused on automatic de-identification methods. Researchers have 

utilized natural language processing (NLP) techniques to build systems that automatically 

recognize PHI from various types of clinical notes [1]–[12]. Community challenges have 

also been organized under the i2b2 project [13], [14] to facilitate empirical system 

comparison and thus expedite the development of automatic de-identification methods.
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The 2016 CEGS N-GRID shared task Track 1 [15] is the most recent community challenge 

to address de-identification of clinical notes. Following 2014 i2b2/UTHealth shared task 

Track 1 [14], the 2016 task defines a wider set of PHI categories than the categories required 

by HIPPA; the task defines seven main categories (Name, Profession, Location, Contact, ID, 

Age, and Date) and 30 sub-categories. Furthermore, the 2016 task focused on psychiatric 

notes, as opposed to discharge summaries or progress notes studied in previous 

challenges[13], [14]. Psychiatric notes are an important but understudied type of clinical 

data in terms of de-identification research, and not included in previous community 

challenges. In addition, the 2016 challenge evaluated both the performance of de-

identification systems without providing labeled data (Track 1A) as well as the more 

traditional evaluation of performance when labeled data is provided (Track 1B). Track 1A 

was designed to test a common issue in clinical NLP: how well do de-identification systems 

perform on data that is different in nature than the system’s original training data? Given the 

wide variety of clinical note types and the difficulty involved in manually annotating all of 

these possible types, it is important to determine how robust a de-identification system is 

when operating in this non-ideal, but common use case.

In this paper, we describe our approach to PHI de-identification and its performance on the 

2016 CEGS N-GRID data. For Track 1A, we utilized an existing, traditional supervised 

learning-based de-identification system based on conditional random fields (CRF). For 

Track 1B, the system was first modified to better suit the structure and form of psychiatric 

notes, including pre- and post-processing, a rule-based tagger for certain PHI elements, and 

splitting the supervised learning system into two separate CRF models. Then, we 

significantly improved the system’s performance by adding rich features and employing 

domain adaptation to incorporate an external de-identification corpus during CRF training. 

Our approach yielded excellent results in both sub-tracks, achieving the second-best ranking 

participant in each, demonstrating the quality and robustness of the approach.

2. Related work

PHI de-identification methods fall into one of three categories: rule-based, machine 

learning-based, and hybrid methods that combine rules and machine learning.

Rule-based de-identification systems appeared as early as 1996, when Sweeney [1] 

developed rules to identify 25 categories of PHIs in pediatric EHR notes. Since then, a 

number of rule-based systems introduced extensive hand-coded rules and specialized 

dictionaries [2]–[7]. Friedlin and McDonald [6] developed the Medical De-identification 

System (MeDS), which is designed to scrub Health Level Seven (HL7) observation 

messages. In addition to extensive regular expressions and dictionaries, the system has a 

word sense disambiguation module based on part-of-speech (POS) information. 

Neamatullah et al. [7] developed a system that uses lexical look-up tables, regular 

expressions, and other heuristics, and tested the system on nursing notes. Incorporating 

context information in order to deal with misspelled PHIs, the system achieved high recall 

(96.7) with moderate precision (74.9). While rule-based systems do not require a large 

amount of training data, curating rules can require significant manual work by domain 
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experts, and yet even human-curated rules often make assumptions about the data that limit 

their robustness on unseen note types.

Machine learning (ML) based systems usually cast de-identification as a token classification 

or sequence classification problem. Various supervised machine learning algorithms, 

including CRFs [16]-[18], Support Vector Machines (SVM) [19], and Decision Trees [20], 

[21], have been employed. Chen et al. [8] proposed a non-parametric Bayesian Hidden 

Markov Model (HMM) that learns a potentially infinite number of latent variables by using 

a Dirichlet process prior. More recently, Dernoncourt et al. [9] proposed a bidirectional Long 

Short-Term Memory (LSTM) based Recurrent Neural Network (RNN) that utilizes both 

token and character embeddings for de-identification, showing higher F-measure results than 

state-of-the-art CRF-based systems. The advantage of the character-based representation is 

that it is robust to small changes in spelling. In general, ML-based systems outperform rule-

based systems when given sufficient annotated data from the dataset of interest (it is 

difficult, however, to generalize the performance of ML- and rule-based methods when 

evaluated data that differs substantially from the annotated data). On the other hand, ML-

based systems typically perform worse than rules on rare types of PHI due to a dearth of 

training data.

Hybrid systems attempt to combine the benefits of both rules and machine learning. Rare 

types of PHIs or PHIs with predictable lexical patterns are better-suited for rules, while 

frequently occurring PHI types, especially those with unpredictable lexical variation are 

better-suited for machine learning [10]–[12]. Liu et al. [10] proposed a hybrid system 

combining a token-level CRF, a character-level CRF, and a rule-based classifier. The output 

of the three component classifiers is considered in a cascaded manner: the rule-based 

classifier is given the highest preference, then the character-level classifier, and then finally 

the token-level classifier. Yang and Garibaldi [11] proposed a hybrid system consisting of a 

CRF and rules with dictionaries and regular expressions. In addition, they include a post-

processing step, in which trusted PHI mentions are utilized to uncover more potential terms.

Our approach follows the general structure of the hybrid systems (i.e., rules for rare and 

regularized PHIs and ML for others), but is different from the previous systems in two 

aspects. First, the system uses an extensive and rich feature set (e.g., word embeddings from 

both medical and open domains, token-shape N-gram, and information derived from the 

structured parts of the clinical notes). Second, the system performance is further improved 

by utilizing an external de-identification corpus through domain adaptation.

3. Methods

In this section, we first introduce the de-identification corpus used in our experiments. Then, 

we describe the pre-existing de-identification system utilized in Task 1A which also acts as 

our baseline system in Task 1B. After that, we introduce our hybrid de-identification 

method. Finally, we explain the evaluation metrics used.
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3.1. Data

The 2016 CEGS N-GRID Task 1 data consists of 1,000 psychiatric notes: a training set of 

600 notes with 20,845 PHIs, and a test set of 400 notes with 13,519 PHIs. All notes are 

annotated with the 7 main PHI categories and 30 sub-categories. The distribution of the PHI 

categories in the corpus is shown in Table 1 of the Supplementary Document.

Initially, the 600 notes of the training set were released for Task 1A without any gold 

standard PHI annotations. After submission for Task 1A, the gold standard PHI annotations 

for the training set were released for Task 1B, along with the unlabeled test set. Task 1A 

performance was thus measured only on the training set, whereas Task 1B performance was 

measured on the test set, whose gold standard annotations were released after the challenge.

3.2. Baseline system (Task 1A)

Our baseline system, which is used for Task 1A, is based on an existing de-identification 

method in the CLAMP toolkit [22]. The system consists of pre-processing steps, a CRF 

tagger, and post-processing rules (Figure 1(a)). In the pre-processing step, psychiatric notes 

are tokenized using the default CLAMP tokenizer, POS tagged using OpenNLP [23], and 

section parsed (identifying sections of the notes) using a dictionary-matching algorithm and 

a dictionary of standard section names in clinical notes provided by CLAMP (e.g., history of 

past illness, chief complaint, mediations).

After pre-processing, a token-based CRF tagger identifies all 30 types of PHI mentions 

using an IOB tagging scheme; the tagger classifies each token as either O (outside of any 

PHI mention), B-type (beginning of a PHI mention of type), or I-type (inside of a PHI 

mention of type), where type can be any of the 30 PHI types. The CRFsuite [24] 

implementation of CRF is used. Without labeled psychiatric notes for Task 1A, the CRF was 

trained on the 2014 i2b2/UTHealth shared task Track 1 data [14], which is annotated with 

the same PHI categories as the 2016 data.

The CRF uses lexical, syntactic, semantic, and discourse level feature types:

(1) Orthographic token shape: orthographic forms of the token produced by 

substituting numbers, uppercase letters, and lowercase letters with ‘#’, ‘A’, and 

‘a’, respectively

(2) Regex token shape: token-level regular expressions for special token shape 

categories (e.g., years, phone numbers, init-caps, all caps)

(3) Prefix/suffix: prefix and suffix of the token (up to three characters)

(4) Token n-gram: unigrams, bigrams and trigrams of the tokens within a window of 

+/− 2

(5) POS n-gram: unigrams, bigrams and trigrams of POS tags of tokens within a 

window of +/− 2

(6) Sentence length: length of the sentence containing the target token (“6+” when 

the sentence is longer than five tokens, which is to distinguish short phrases 

from full sentences)
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(7) Sentence shape: whether the sentence ends with a colon or starts with an 

enumeration indicator such as ‘a)’ or ‘2.’1

(8) Section header: type of the section containing the target token (e.g., Chief 

Complaint, Medication)

(9) Word representations: Brown clusters [25], random indexing [26], and clusters 

[27] based on word2vec embeddings [28]. All three word representations were 

built from MIMIC II [29].

(10) Dictionary-matching: based on frequent PHI terms such as country names, city 

names, popular first and last names

Finally, a post-processing step corrects common ML errors observed on the training data.

3.3. Hybrid system (Task 1B)

The baseline system was heavily modified to add extensive pre-processing and post-

processing rules that are customized to the psychiatric notes, transforming the ML-based 

system into a hybrid system. Our hybrid approach consists of a pre-processing component, 

two CRF taggers, one rule-based tagger, and a post-processing component. Supplementary 

Table 3 summarizes which of the taggers in the hybrid system is applied to which of the PHI 

categories.

3.3.1. Pre-processing—Pre-processing consists of tokenization, POS tagging, and 

section parsing. The pre-processing modules of the baseline system were modified based on 

the structure and form of the psychiatric notes. For example, the notes contain a number of 

conjoined words (e.g., “rangeImpression”), which are likely the result of faulty EHR data 

extraction as opposed to human error in the original composition. But these errors can result 

in tokens that contain part of a PHI mention (e.g., “winterHx” where “winter” is PHI type 

DATE; “stantonPsychiatric” where “stanton” is PHI type NAME). To handle this, an overly 

aggressive tokenization strategy is used: tokens are split when a number follows a letter, or 

vice versa, and when an uppercase letter follows a lowercase letter. In addition, the section 

header dictionary for the dictionary-based section parser was also extended to increase the 

coverage of section headers in the psychiatric notes.

Additionally, the hybrid system employs two new pre-processing steps that specifically 

target the structure of the particular psychiatric notes in this data. First, all section headers 

were considered non-PHI and removed from training. Second, the notes contain many 

attribute-value pairs such as “cocaine: no”. 244 regular expressions were compiled to 

identify such attribute-value pairs and transform these parts of the notes into semi-structured 

data (intended for Track 2). Then, the attributes that do not contain PHI were removed from 

training. These two filtering steps were employed under the hypothesis that removing non-

PHI text from further processing would benefit the CRF training, creating a more balanced 

training set and focusing model learning on more difficult cases.

1As is commonly done in clinical NLP, we consider a colon followed by a newline as a sentence separator.
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3.3.2. Rule-based tagger—The hybrid system employs a rule-based tagger for PHI 

categories that show distinct surface patterns or that occur infrequently in the training data. 

A number of regular expressions are used to identify CONTACT-URL, CONTACT-EMAIL, 

CONTACT-PHONE, NAME-USERNAME, ID-MEDICALRECORD, ID-IDNUM, ID-

LICENSE, LOCATION-STATE, LOCATION-STREET, AGE-AGE and DATE-DATE type 

PHI mentions. Table 1 shows a sample of the regular expressions for each PHI category. The 

number of regular expressions for each PHI category is shown in Table 2 of the 

Supplementary Document.

3.3.3. CRF taggers—Two CRF taggers predict PHI mentions of different types. The first 

CRF is for quantitative types: DATE, AGE, and CONTACT. The second CRF is for name 

types: NAME, LOCATION, and PROFESSION. Both CRFs use a common feature base as 

well as some additional classifier-specific features. The base feature set includes the 10 

features for the baseline system (Section 3.2), plus the following:

(11) Open-domain word embeddings: binarized [30] pre-built GloVe word 

embeddings [31]

(12) Token shape N-gram: unigram, bigram and trigram of word shapes of nearby 

tokens in window of +/−2 (using orthographic token shapes)

(13) Attribute name: the attribute name when the token is part of the value in an 

attribute-value pair

Features that are specific to the quantitative CRF are as follows:

(1) Context token shape: regex-based token shapes of nearby tokens in widow of +/

−3

Features that are specific to the name CRF are as follows:

(1) Profession suffix: whether the token ends with a suffix that is common to 

PROFESSION mentions, i.e., -ist, -ian, -man.

(2) General domain NER: output of Stanford NER [32]

(3) Semantic role labeling: output of SENNA semantic role labeling [33], 

combining both role and predicate (e.g., “A1-see” for a token which is part of 

the direct object of the predicate “see”.).

Additionally, some base features were also updated (e.g., new dictionary entries, new token 

shape regular expressions). The features that are used for each of the CRF taggers are 

summarized in Table 4 of the Supplementary Document.

Finally, for both CRFs, a domain adaptation method is used to incorporate the 2014 de-

identification challenge corpus [14] into the CRF training data. Domain adaptation is a set of 

techniques that enables learning from a dataset that is annotated with the same set of labels 

as the task at hand, but has different distribution [34]–[36]. While the 2014 corpus is 

annotated with the same PHI types as the target psychiatric notes for CEGS N-GRID 

challenge, the data distribution is different due to different clinical note types. The feature 
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augmentation method EasyAdapt [37] is used for domain adaptation, as the algorithm was 

shown to be effective in previous work [38] and is easy to implement.

EasyAdapt works by mapping feature vectors into higher dimensions. Given features from 

the target data (2016 corpus in our case) and the source data (2014 corpus) the algorithm 

generates three versions of feature sets: general, source-specific, and target-specific versions. 

As a result, the augmented feature vectors become three times longer than the originals. 

Formally, given a source feature vector Xs and a target feature vector Xt, the EasyAdapt 

feature augmentation function EA can be described as follows:

where 0 is a zero vector of length |X|. In the tuples above, the first elements represent the 

general version features, the second elements represent the source-specific version features, 

and the third are the target-specific version features. The intuition behind this algorithm is to 

leverage three versions of features to find best feature representations for the target domain. 

The general-version features will get higher weights for common instances of both target 

and source, whereas that the target-specific or the source-specific versions of the features 

will gain weights for instances unique for target or source, respectively.

3.3.4. Post-processing—Post-processing is composed of three steps. In the first step, the 

results from the three taggers (one rule-based tagger and two CRF taggers) are merged. PHI 

mentions from one of the CRF taggers that overlap with a mention from the rule-based 

tagger are removed, under an assumption that the rules would produce results with higher 

precision than the CRFs. Overlapping mentions from the CRF taggers are both kept, which 

occur very rarely.

In the second step, error correction is performed. Common CRF tagger errors (based on a 

cross-validation of the training data) are fixed. For instance, FAX numbers, which are often 

misclassified as PHONE numbers, are corrected using context information. STATE names 

not in the US state name dictionary are removed. ORGANIZATION names misclassified as 

HOSPITAL are also corrected when nearby tokens (+/−3) contain school-related keywords 

such as ‘study’, ‘degree’, and ‘senior’.

In the third step, global reconciliation is applied to force type agreement between entities in 

the same document with the same string value. PHI mentions—especially patient, doctor, 

and hospital names— often appear several times in a document, thus errors in a subset of 

identical-string mentions can be fixed by a combination of high-precision rules and a type-

counting strategy. The high-precision rules consist of regular expressions built using the 

training data. For instance, if a DOCTOR PHI mention has preceding ‘Dr’ in its immediate 

context, other mentions of the name can be assumed to be a DOCTOR as well. The attribute-

value structures provide another source for rules, e.g. if a doctor name is found in the value 

part of a “referral source” attribute. For type-counting, if the same name is predicted as 

being the same type at least two times in a document, then all names are altered to that 

frequent type.
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3.4. Evaluation

De-identification performance is measured using precision, recall, and F1-measure at the 

entity, token, and binary level. At the entity level (the traditional NER evaluation), system 

outputs are compared to the gold standard using both the type and character offsets. A 

‘strict’ entity match requires the offsets to be exactly correct, whereas a ‘relaxed’ match 

allows for up to two characters of difference in the ending offset. At the token level, both 

type and position must also match, but the evaluation is done on a per-token basis (thus 

assigning partial credit if a predicted PHI is off by a word). Finally, at the binary level, only 

the positions of the predicted PHI mentions are evaluated, and the type information is 

ignored (i.e., any type of PHI). Binary level evaluation is done as both a ‘strict’ entity level 

match and as a token level match. For statistical significance testing, the approximate 

randomization test [39] with N=9999 and α=0.1 is used.

Two sets of PHI types are evaluated. One is the CEGS N-GRID PHI types (i.e., 7 main 

categories and 30 sub-categories) defined by the challenge organizers. The other is the 

HIPAA PHI types, a subset of PHI types defined by the Health Insurance Portability and 

Accountability Act (HIPAA). The CEGS N-GRID challenge defined the micro-averaged F1-

measure of the ‘strict’ entity level for the full set of types as the primary evaluation measure.

4. Results and Discussion

In this section, we report the performance of our systems and discuss the results. For both 

Task 1A and 1B, the participants were allowed to submit up to three runs. Here, we report 

the results from our official runs as well as a few additional experiments.

4.1. Task 1A

Table 2 shows the Task 1A (no labeled data) performance of the baseline system evaluated 

on the 600-document set (the training set for Task 1B). With strict entity level evaluation, the 

system F1 is 74.5. While this is the second best performance achieved by the challenge 

participants [15], the performance is much lower than the performance of the top-ranked 

systems on the 2014 i2b2 challenge [14]. The top system on the 2014 data achieved an F1 of 

93.60, while the median system had an F1 of 81.19. Table 3 shows the performance of the 

baseline system with different combinations of training and test data. Without new data, our 

baseline CRF model trained on 2014 training set showed drops in F1 from 91.97 (2014 test 

set) to 74.5 (Track 1A). The CRF model trained on 2016 showed a lower performance of 

87.55. This demonstrates the importance of incorporating appropriately similar data for 

machine learning-based systems. It also indicates that either de-identification on psychiatric 

notes is more challenging than on the 2014 notes, or that more annotated data is necessary to 

achieve similar results to other datasets.

4.2. Task 1B

4.2.1. Overall performance—Table 4 shows the overall performance of the hybrid 

system evaluated on the test set. The performance at binary-level is generally the highest, 

followed by token-level, with entity-level evaluation having the lowest scores. Also, the 

system performed better with HIPAA categories than with N-GRID categories, as difficult 
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categories such as PROFESSION are excluded in the HIPAA categories. Based on the 

primary measure used by the challenge (i.e., F1 by entity-level strict evaluation with N-

GRID categories), our hybrid system achieved second best performance among all the 

participants [15].

Table 5 shows the performance for each main PHI category. While DATE and AGE 

performed the best among the main categories, PROFESSION, LOCATION and ID had the 

lowest F1 scores. PROFESSION and LOCATION are known to be difficult from the 

previous challenge [14]; those categories show surface patterns with lower regularity and 

higher variety. The low performance of ID category is due to previously unseen types of ID 

PHI mentions that only appear in the test set, not in the training set. Thus, they are not 

covered by the regular expressions of the rule-based tagger.

Table 6 shows the performance for each PHI subcategory. Subcategories that show regular 

surface patterns showed high F1 scores (i.e., PHONE, DATE, LICENSE, STATE, 

COUNTRY, ZIP). DOCTOR and AGE also showed high performance, probably due to the 

existence of strong context cues (e.g., ‘Dr.’ for doctor name, ‘age’ or ‘yo’ for AGE) in 

addition to the abundance of training examples. Subcategories with a small number of 

examples such as FAX, EMAIL, URL and LOCATION-OTHER had the lowest F1 scores. 

Finally, subcategories that have highly varied surface forms such as PROFESSION, 

STREET and ORGANIZATION had especially poor recall.

4.2.2. Component impact analysis—Table 7 shows the performance of the hybrid 

system at each processing step. The addition of the rule-tagger and the two post-processing 

steps (i.e. the error correction and global reconciliation steps) increased the system 

performance. In particular, the rule-tagger and error correction steps show statistically 

significant performance improvement over previous steps. However, the system performance 

is shown to be heavily dependent on the performance of the CRF taggers.

In order to further investigate the performance of the CRF taggers, we performed additional 

experiments. Table 8 shows the performance of the two CRF taggers with and without 2014 

data. Note that we report system performance without the rule tagger and post-processing in 

order to emphasize the effect of additional training data on the CRF taggers. The addition of 

the i2b2 2014 de-identification corpus increased both precision and recall, resulting in 

statistically significant F1-measure improvement. EasyAdapt showed better recall than 

simply merging the two corpora. In contrast, simple merge showed better precision. In terms 

of F1-measure, the use of EasyAdapt did not show statistically significant performance 

improvement compared to simple merge.

Table 9 shows the ablation test results on features that are newly introduced to the hybrid 

system. Only the features used for both CRF taggers are shown. The test result shows that 

the new features are all useful in improving the performance, showing statistically 

significant performance increases. Additional ablation test results on more features are 

shown in Table 4 of the Supplementary Documents.
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The hybrid system uses both word embeddings trained on medical corpora and word 

embeddings trained on open domain corpora. Table 10 shows the result of experiments with 

various sub-sets of word embeddings. Open domain word embedding show slightly better 

performance than medical domain word embeddings. However, the best performance is 

achieved with both sets of embeddings. This is consistent with the finding by Roberts [40] of 

the importance of utilizing a variety of embeddings for clinical NLP.

Finally, we tested the effect of different rules for global reconciliation, shown in Table 11. 

The global reconciliation rules resulted in a minimal gain, largely through improved recall. 

Overall, the performance increase by the global reconciliation rules was not shown to be 

statistically significant.

4.2.3. Error analysis—We performed detailed error analysis based on the confusion 

matrix shown in Table 12. The errors fall into three categories: type errors, missing errors, 

and spurious errors.

A type error occurs when a PHI mention’s offsets are correct, but the type is incorrect. Type 

errors occurred the most between HOSPITAL names and other name categories such as 

PATIENT, ORGANIZATION and CITY. When PATIENT names were written as initials not 

in full names, they were frequently mis-identified as HOSPITAL names. For instance, in 

“yet KC denies feelings of depression”, KC is the PATIENT name initials, but is mis-

identified as HOSPITAL. Confusion between HOSPITAL and ORGANIZATION, and 

between HOSPITAL and CITY are due to similar context around the PHI terms. For 

instance, “psychotherapy in Gallatin Valley at age 17 – 18” contains HOSPITAL type PHI 

‘Gallatin Valley’, which was misclassified as a CITY name.

A missing error occurs when a PHI mention is completely missed (i.e., a false negative). The 

PROFESSION category produced the most missing errors. We believe that this is due to the 

great variety of PROFESSION mentions. For instance, PROFESSION mentions occur with 

various syntactic forms. E.g., “dancing”, “danced”, and “dancer” can be a PROFESSION. 

Moreover, verb phrases such as “leads a development team” can be a PROFESSION. Even 

professions in a medical field, such as “Doctor” and “RN” were frequently missed. The 

ORGANIZATION category produced the second most missing errors, similarly due to the 

great variety of the surface forms, especially abbreviations.

Finally, a spurious error occurs when a non-PHI mention is wrongly identified as a PHI 

mention (i.e., a false positive). The DATE category produced the most spurious errors, 

mostly due to partial or overlapping matches for multiword DATE mentions. For instance, 

while “Wednesday, 4/17/94” is the gold standard DATE mention, the system predicted 

“Wednesday” and “4/17/94” separately as DATE mentions. PROFESSION produced the 

second most spurious errors. Again, multiword PROFESSION mentions were the major 

source of the errors. For instance, for “Senior Manager of Education”, only “Senior 

Manager” was predicted. Conversely, the system wrongly predicted “professional fashion 

designer” as a PROFESSION mention, but only “fashion designer” was annotated in the 

gold standard annotation.
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The three types of errors have different consequences from each other. While missing errors 

induce the risk of revealing patient’s identity, type errors and spurious errors are free of such 

risk. On the other hand, type errors and spurious errors may bring difficulties for 

downstream utilization of the notes. Type errors would leave false placeholders (e.g., 

placeholder for CITY after removing a hospital name), confusing the readers of de-identified 

notes. Spurious errors falsely remove non-PHI information, which may be important for 

clinical or research applications that use the de-identified notes. This observation raises the 

issue of how to optimize the trade-off of recall and precision. Higher recall ensures better 

protection of the patient’s identity, and higher precision implies losing less non-PHI 

information that may be of medical importance. While F1-measure is primarily used to 

compare de-identification systems, it hides the trade-off between precision and recall, which 

might be important when choosing which de-identification system to use. Other variants of 

F-measure would be used to weight precision or recall more highly, unlike the balanced F1.

Also, it is interesting to see that some errors can be considered as artifacts that result from 

the particular evaluation method being used. For instance, a spurious error produced by 

splitting “Wednesday, 4/17/94” into “Wednesday” and “4/17/94” neither reveals any PHI nor 

loses any non-PHI information. In fact, such a case will be considered as an error only under 

entity-level evaluation scheme. Using a token-level evaluation, both “Wednesday” and 

“4/17/94” will be considered as true positives.

5. Conclusion

In this paper, we described a hybrid de-identification system that is developed for psychiatric 

notes, as part of the CEGS N-GRID challenge. The system is composed of a rule tagger and 

two CRF taggers. The rule tagger is optimized through customization to the psychiatric 

notes. The performance of the CRF taggers is boosted with both a rich feature set as well as 

the integration of additional training data through domain adaptation. Our system achieved 

F-score 90.74, second-best among all the participants.

The CEGS N-GRID 2016 challenge uniquely emphasizes the importance of de-identification 

system robustness across different note types. Our baseline system showed an F1-measure of 

74.5 for Task 1A without utilizing labeled psychiatric notes, but the performance was 

significantly increased to 87.55 when labeled training data was incorporated. This indicates 

that being able to customize a de-identification system to the data is critical. While a 

sufficient amount of target data for maximum performance of ML component is ideal, 

having even a limited amount of labeled data can also help (i.e., through simple error 

analysis and developing rule-based system). Beyond this, when the training data in the 

domain is not enough to maximize ML performance, one can utilize another existing dataset 

to bridge the gap, as shown by our experiment with CRF taggers (F-score 90.09 with 2014 

data through domain adaptation, and 89.55 without 2014 data).
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• A hybrid approach for automatic de-identification of psychiatric notes is 

proposed.

• The rule-based components exploit the structure of the psychiatric notes.

• The machine learning components integrate additional data to training set.

• The system showed second-best performance at the CEGS N-GRID task 1.
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Figure 1. 
Overview of the de-identification systems for Task 1A (the baseline system) and Task 1B 

(the hybrid system)
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Table 1

Example regular expressions for rule-based tagger. In the examples, italicized letters indicate the context that 

is matched to the look-behind or look-ahead parts of the regular expressions, not the predicted PHI mentions.

PHI category Regular expression Example PHI mention

URL (http://)?(www\.)?[a-zA–Z0-9]+\.(com|net|org|gov) www.womensmentalhealth.org

EMAIL [a-zA–Z0-9]+@[a-zA–Z0–9]+\.(com|net|org|gov) akilj@hospital.org

PHONE \(\d{3}\)[\-\. ]?\d{3}[\-\. ]?\d{4} 447-742-0756

(?<=pager)\d{5} pager 07516

USERNAME (?<=\[\s{0,1}][a-z]+[0-9]+(?=\s{0,1}\)) [hpp2]

MEDICALRECORD (?<=MRN:\s{0,2})\d{7} MRN: 2418195

NUM (?<=Devon Pharm ID:\s{0,2})\d{11} Devon Pharm ID: 50970046433

LICENSE (?<!member)[A-Z][A-Z]-? ?\d{7}(-? ?\d{4})? XF-1747210-9837

STATE Texas(?=?([^A-Z\-]|$)) Texas

(?<=(in|to|from))FL(?=?([^A-Z\-]|$)) FL

STREET (?<!-)\d+([A-Z][a-z]*)+Drive(?![A-Za-z]) 82 Brook Drive

AGE (?<=\b[Aa]ged?)\d+(?=? -?years) Aged 82 years

DATE [Ss]undays? Sunday

[Cc]hristmas Christmas

J Biomed Inform. Author manuscript; available in PMC 2018 November 01.
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Table 2

The overall performance of the baseline system. Entity-Strict level evaluation results, which are the primary 

results used by the N-GRID challenge [15], are shown in bold face.

PHI type set Evaluation level Precision Recall F1-measure

N-GRID PHI types Token 89.01 71.03 79.01

Entity-Strict 85.54 65.98 74.5

Entity-Relaxed 85.84 66.2 74.75

Binary-Token 95.64 76.32 84.9

Binary-Strict 90.61 69.89 78.91

HIPAA PHI types Token 92.09 73.69 81.87

Entity-Strict 88.05 67.91 76.68

Entity-Relaxed 88.46 68.23 77.04

Binary-Token 93.59 74.89 83.2

Binary-Strict 89.02 68.66 77.52
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Table 3

The performance of baseline system with different combinations of training and test data (micro-averaged, at 

strict entity level). 2014: i2b2/UTHealth Challenge[14], 2016: CEGS N-GRID Challenge [15]

Training data Test data Precision Recall F-measure

2014 training 2014 test 94.95 89.17 91.97

2014 training + test 2016 training 85.54 65.98 74.50

2014 training + test 2016 test 83.94 66.57 74.25

2016 training 2016 test 92.34 83.23 87.55
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Table 4

The overall performance of the hybrid system. Entity-Strict level evaluation results, which are the primary 

results used by the N-GRID challenge [15], are shown in bold face.

PHI category set Evaluation level Precision Recall F1-measure

N-GRID categories Token 95.23 90.15 92.62

Entity-Strict 93.39 88.23 90.74

Entity-Relaxed 93.5 88.33 90.84

Binary-Token 97.84 92.62 95.16

Binary-Strict 95.66 90.38 92.94

HIPAA categories Token level 96.3 92.24 94.23

Entity-Strict 94.56 90.47 92.47

Entity-Relaxed 94.67 90.57 92.58

Binary-Token 97.18 93.09 95.09

Binary-Strict 95.34 91.21 93.23
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Table 5

The performance of i2b2 main PHI categories (micro-averaged on 2016 test set, at strict entity level). Number 

of training instances for each main category is also shown.

PHI category Precision Recall F1-measure # training instances (%)

CONTACT 93.5 91.27 92.37 154 (0.74)

NAME 94.48 92.47 93.46 3,691 (17.71)

DATE 97.04 95.32 96.17 5,723 (27.46)

AGE 96.0 93.88 94.93 3,637 (17.45)

PROFESSION 86.44 64.36 73.78 1,471 (7.06)

ID 95.24 60.61 74.07 44 (0.21)

LOCATION 88.47 81.36 84.76 7,213 (34.60)

J Biomed Inform. Author manuscript; available in PMC 2018 November 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lee et al. Page 22

Ta
b

le
 6

T
he

 p
er

fo
rm

an
ce

 o
f 

i2
b2

 P
H

I 
su

bc
at

eg
or

ie
s 

(m
ic

ro
-a

ve
ra

ge
d 

on
 2

01
6 

te
st

 s
et

, a
t s

tr
ic

t e
nt

ity
 le

ve
l)

. O
nl

y 
th

e 
ca

te
go

ri
es

 th
at

 a
pp

ea
r 

in
 th

e 
te

st
 s

et
 a

re
 

sh
ow

n 
in

 th
e 

ta
bl

e.
 N

um
be

r 
of

 tr
ai

ni
ng

 in
st

an
ce

s 
fo

r 
ea

ch
 s

ub
 c

at
eg

or
y 

is
 a

ls
o 

sh
ow

n.

M
ai

n 
ca

te
go

ry
Su

bc
at

eg
or

y
P

re
ci

si
on

R
ec

al
l

F
1-

m
ea

su
re

# 
tr

ai
ni

ng
 in

st
an

ce
s 

(%
)

C
O

N
TA

C
T

PH
O

N
E

98
96

97
14

3 
(0

.6
9)

FA
X

50
60

55
4 

(0
.0

2)

E
M

A
IL

10
0

60
75

2 
(0

.0
1)

U
R

L
25

33
29

5 
(0

.0
2)

N
A

M
E

D
O

C
T

O
R

95
96

96
2,

39
6 

(1
1.

49
)

PA
T

IE
N

T
93

85
89

1,
27

0 
(6

.0
9)

D
A

T
E

D
A

T
E

97
95

96
5,

72
3 

(2
7.

46
)

A
G

E
A

G
E

96
94

95
3,

63
7 

(1
7.

45
)

PR
O

FE
SS

IO
N

PR
O

FE
SS

IO
N

86
64

74
1,

47
1 

(7
.0

6)

ID
H

E
A

LT
H

PL
A

N
0

0
0

0 
(0

.0
0)

L
IC

E
N

SE
95

95
95

38
 (

0.
18

)

M
E

D
IC

A
L

R
E

C
O

R
D

0
0

0
4 

(9
.0

9)

ID
N

U
M

0
0

0
2 

(0
.0

1)

L
O

C
A

T
IO

N
H

O
SP

IT
A

L
87

82
84

2,
19

6 
(1

0.
53

)

ST
R

E
E

T
92

68
78

46
 (

0.
22

)

O
R

G
A

N
IZ

A
T

IO
N

82
61

70
1,

11
3 

(5
.3

4)

C
IT

Y
88

89
88

1,
39

4 
(6

.6
9)

ST
A

T
E

94
95

94
66

2 
(3

.1
8)

C
O

U
N

T
R

Y
95

88
92

66
6 

(3
.2

0)

Z
IP

10
0

88
94

23
 (

0.
11

)

O
T

H
E

R
67

11
18

25
 (

0.
12

)

J Biomed Inform. Author manuscript; available in PMC 2018 November 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lee et al. Page 23

Table 7

The performance of the hybrid system measured at each step. “CRF taggers” stands for combination of the 

two CRFs (one for quantitative types, and another for name types). Statistically significant performance 

improvement over previous step is marked with*.

Precision Recall F1-measure

CRF taggers 93.22 87.16 90.09

 + rule tagger 93.09 87.54 90.23*

 + error correction 93.55 87.75 90.56*

 + global reconciliation 93.39 88.23 90.74
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Table 8

The performances of CRF taggers with/without 2014 data. +DA stands for the use of domain adaptation 

algorithm, while −DA stands for simply merging 2016 training and 2014 data. Statistically significant 

performance improvement over using only 2016 training data is marked with*.

Precision Recall F1-measure

2016 training 92.87 86.46 89.55

 + 2014 data (+DA) 93.22 87.16 90.09*

 + 2014 data (−DA) 93.59 86.74 90.03*
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Table 9

Ablation test for additional features of hybrid system. Statistically significant performance decrease over using 

all features is marked with *.

Precision Recall F1-measure ΔF

All 93.22 87.16 90.09

- open domain word embeddings 93.51 86.23 89.72* −0.37

- attribute name 92.98 86.89 89.83* −0.26

- token shape n-gram 93.05 86.65 89.73* −0.36
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Table 10

The performance of CRF taggers with different word embedding (WE) features. Statistically significant 

performance increase over using no embeddings is marked with*. Statistically significant performance 

decrease over using both embeddings is marked with ◊.

Precision Recall F1-measure

No WE feature 93.25 85.86 89.41 ◊

Medical domain WE only 93.51 86.23 89.72*◊

Open domain WE only 93.03 86.84 89.83*◊

Medical WE + Open WE 93.22 87.16 90.09*
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Table 11

System performance with additional global reconciliation (GR) modules

Precision Recall F1-measure

Before GR 93.55 87.75 90.56

 + GR with high-precision rules 93.58 87.94 90.67

 + GR with type-counting 93.39 88.23 90.74
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